Вольфрамовая сталь. Мастерская алексея позднякованожи и клинки ручной работы Получение вольфрама: порошок и компактный металл

Химия

Элемент № 74 вольфрам причисляют обычно к редким металлам: его содержание в земной коре оценивается в 0,0055%; его нет в морской воде, его не удалось обнаружить в солнечном спектре. Однако по популярности онможет поспорить со многими отнюдь не редкими металлами, а его минералы были известны задолго до открытия самого элемента. Так, еще в XVII в. во многих европейских странах знали «вольфрам» и «тунгстен» - так называли тогда наиболее распространенные минералы вольфрама - вольфрамит и шеелит. А элементарный вольфрам был открыт в последней четверти XVIII в .

Вольфрамовая руда

Очень скоро этот металл получил практическое значение - как легирующая добавка. А после Всемирной выставки 1900 г. в Париже, на которой демонстрировались образцы быстрорежущей вольфрамовой стали, элемент № 74 стали применять металлурги во всех более или менее промышленно развитых странах. Главная особенность вольфрама как легирующей добавки заключается в том, что он придает стали красностойкость - позволяет сохранить твердость и прочность при высокой температуре. Более того, большинство сталей при охлаждении на воздухе (после выдержки при температуре, близкой к температуре красного каления) теряют твердость. А вольфрамовые - нет.
Инструмент, изготовленный из вольфрамовой стали, выдерживает огромные скорости самых интенсивных процессов металлообработки. Скорость резания таким инструментом измеряется десятками метров в секунду.
Современные быстрорежущие стали содержат до 18% вольфрама (или вольфрама с молибденом), 2-7% хрома и небольшое количество кобальта. Они сохраняют твердость при 700-800° С, в то время как обычная сталь начинает размягчаться при нагреве всего до 200° С. Еще большей твердостью обладают «стеллиты» - сплавы
вольфрам а с хромом и кобальтом (без железа) и особенно карбиды вольфрама - его соединения с углеродом. Сплав «видна» (карбид вольфрама, 5-15% кобальта и небольшая примесь карбида титана) в 1,3 раза тверже обычной вольфрамовой стали и сохраняет твердость до 1000- 1100° С. Резцами из этого сплава можно снимать за минуту до 1500-2000 м железной стружки. Ими можно быстро и точно обрабатывать «капризные» материалы: бронзу и фарфор, стекло и эбонит; при этом сам инструмент изнашивается совсем незначительно.
В начале XX в. вольфрамовую нить стали применять в электрических лампочках: она позволяет доводить накал до 2200° С и обладает большой светоотдачей. И в этом качестве вольфрам совершенно незаменим до наших дней. Очевидно, поэтому электрическая лампочка названа в одной популярной песне «глазком вольфрамовым».

Минералы и руды вольфрама

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисыо вольфрама WO 3 и окислами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Наиболее распространенный минерал, вольфрамит, представляет собой твердый раствор вольфраматов (солей вольфрамовой кислоты) железа и марганца (mFeW0 4 *nMnW0 4). Этот раствор - тяжелые и твердые кристаллы коричневого или черного цвета, в зависимости от того, какое соединение преобладает в их составе. Если больше побнерита (соединения марганца), кристаллы черные, если же преобладает железосодержащий ферберит - коричневые. Вольфрамит парамагнитен и хорошо проводит электрический ток.
Из других минералов вольфрама промышленное значение имеет шеелит - вольфрамат кальция CaW04. Он образует блестящие, как стекло, кристаллы светло-желтого, иногда почти белого цвета. Шеелит немагнитен, но он обладает другой характерной особенностью - способностью к люминесценции. Если его осветить ультрафиолетовыми лучами, он флуоресцирует в темноте ярко-синим цветом. Примесь молибдена меняет окраску свечения шеелита: она становится бледно-синей, а иногда даже кремовой. Это свойство шеелита, используемое в геологической разведке, служит поисковым признаком, позволяющим обнаружить залежи минерала.
Месторождения вольфрамовых руд теологически связаны с областями распространения гранитов . Крупнейшие зарубежные месторождения вольфрамита и шеелита находятся в Китае, Бирме, США, Боливии и Португалии. Наша страна тоже располагает значительными запасами минералов вольфрама, главные их месторождения находятся на Урале, Кавказе и в Забайкалье.
Крупные кристаллы вольфрамита или шеелита - большая редкость. Обычно вольфрамовые минералы лишь вкраплены в древние гранитные породы - средняя концентрация вольфрама в итоге оказывается в лучшем случае 1-2%. Поэтому извлечь вольфрам из руд очень трудно.


Как получают вольфрам

Первая стадия - обогащение руды, отделение ценных компонентов от основной массы - пустой породы. Методы обогащения - обычные для тяжелых руд и металлов: измельчение и флотация с последующими операциями - магнитной сепарацией (для вольфрамитиых руд) и окислительным обжигом.
Полученный концентрат чаще всего спекают с избытком соды, чтобы перевести вольфрам в растворимое соединение - вольфрамат натрия. Другой способ получения этого вещества - выщелачивание; вольфрам извлекают содовым раствором под давлением и при повышенной температуре (процесс идет в автоклаве) с последующей нейтрализацией и осаждением в виде искусственного шеелита, т. е. вольфрамата кальция. Стремление получить именно вольфрамат объясняется тем, что из него сравнительно просто, всего в две стадии:
CaW0 4 → H 2 W0 4 или (NH 4) 2 W0 4 → WO 3 , можно выделить очищенную от большей части примесей окись вольфрама.
Есть еще один способ получения окиси вольфрама - через хлориды. Вольфрамовый концентрат при повышенной температуре обрабатывают газообразным хлором. Образовавшиеся хлориды вольфрама довольно легко отделить от хлоридов других металлов методом возгонки, используя разницу температур, при которых эти вещества переходят в парообразное состояние. Полученные хлориды вольфрама можно превратить в окисел, а можно пустить непосредственно на переработку в элементарный металл.

Превращение окислов или хлоридов в металл - следующая стадия производства вольфрама. Лучший восстановитель окиси вольфрама - водород. При восстановлении водородом получается наиболее чистый металлический вольфрам. Процесс восстановления происходит в трубчатых печах, нагретых таким образом, что по мере продвижения по трубе «лодочка» с W0 3 проходит через несколько температурных зон. Навстречу ей идет поток сухого водорода. Восстановление происходит и в «холодных» (450-600° С) и в «горячих» (750-1100° С) зонах; в «холодных» - до низшего окисла W0 2 , дальше - до элементарного металла. В зависимости от температуры и длительности реакции в «горячей» зоне меняются чистота и размеры зерен выделяющегося на стенках «лодочки» порошкообразного вольфрама.
Восстановление может идти не только под действием водорода. На практике часто используется уголь. Применение твердого восстановителя несколько упрощает производство, однако в этом случае требуется более высокая температура - до 1300-1400° С. Кроме того, уголь и примеси, которые он всегда содержит, вступают в реакции с вольфрамом, образуя карбиды и другие соединения. Это приводит к загрязнению металла. Между тем электротехнике нужен весьма чистый вольфрам. Всего 0,1% железа делает вольфрам хрупким и малопригодным для изготовления тончайшей проволоки.
Получение вольфрама из хлоридов основано на процессе пиролиза. Вольфрам образует с хлором несколько соединений. С помощью избытка хлора все их можно перевести в высший хлорид - WCl 6 , который разлагается на вольфрам и хлор при 1600° С. В присутствии водорода этот процесс идет уже при 1000° С.
Так получают металлический вольфрам, но не компактный, а в виде порошка, который затем прессуют в токе водорода при высокой температуре. На первой стадии прессования (при нагреве до 1100-1300° С) образуется пористый ломкий слиток. Прессование продолжается при еще более высокой температуре, едва не достигающей под конец температуры плавления вольфрама. В этих условиях металл постепенно становится сплошным, приобретает волокнистую структуру, а с ней - пластичность и ковкость.

Главные свойства

Вольфрам отличается от всех остальных металлов особой тяжестью, твердостью и тугоплавкостью. Давно известно выражение: «Тяжелый, как свинец». Правильнее было бы говорить: «Тяжелый, как вольфрам». Плотность вольфрама почти вдвое больше, чем свинца, точнее - в 1,7 раза. При этом атомная масса его несколько ниже: 184 против 207.

По тугоплавкости и твердости вольфрам и его сплавы занимают высшие места среди металлов. Технически чистый вольфрам плавится при 3410° С, а кипит лишь при 6690° С. Такая температура - на поверхности Солнца!
А выглядит «король тугоплавкости» довольно заурядно. Цвет вольфрама в значительной мере зависит от способа получения. Сплавленный вольфрам - блестящий серый металл, больше всего напоминающий платину. Вольфрамовый порошок - серый, темно-серый и даже черный (чем мельче зернение, тем темнее).

Химическая активность

Природный вольфрам состоит из пяти стабильных изотопов с массовыми числами от 180 до 186. Кроме того, в атомных реакторах в результате различных ядерных реакций образуются еще 8 радиоактивных изотопов вольфрама с массовыми числами от 176 до 188; все они сравнительно недолговечны: их периоды полураспада - от нескольких часов до нескольких месяцев.
Семьдесят четыре электрона атома вольфрама расположены вокруг ядра таким образом, что шесть из них находятся на внешних орбитах и могут быть отделены сравнительно легко. Поэтому максимальная валентность вольфрама равна шести. Однако строение этих внешних орбит особое - они состоят как бы из двух «ярусов»: четыре электрона принадлежат предпоследнему уровню -d, который оказывается, таким образом, заполненным меньше чем наполовину. (Известно, что число электронов в заполненном уровне d равно десяти.) Эти четыре электрона (очевидно, неспарепные) способны легко образовывать химическую связь. Что же касается двух «самых наружных» электронов, то их оторвать совсем легко.
Именно особенностями строения электронной оболочки объясняется высокая химическая активность вольфрама. В соединениях он бывает не только шестивалентным, но и пяти-, четырех-, трех-, двух- и нульвалентным. (Неизвестны лишь соединения одновалентного вольфрама).
Активность вольфрама проявляется в том, что он вступает в реакции с подавляющим болишинстом элементов, образуя множество простых и сложных соединений. Даже в сплавах вольфрам часто оказывается химически связанным. А с кислородом и другими окислителями он взаимодействует легче, чем большинство тяжелых металлов.
Реакция вольфрама с кислородом идет при нагревании, особенно легко - в присутствии паров воды. Если вольфрам нагревать на воздухе, то при 400-500° С на поверхности металла образуется устойчивый низший окисел W0 2 ; вся поверхность затягивается коричневой пленкой. При более высокой температуре сначала получается промежуточный окисел W 4 O 11 синего цвета, а затем лимонножелтая трехокись вольфрама W0 3 , которая возгоняется при 923° С.

Сухой фтор соединяется с тонкоизмельченным вольфрамом уже при небольшом нагревании. При этом образуется гексафторид WF6 - вещество, которое плавится при 2,5° С и кипит при 19,5° С. Аналогичное соединение - WCl 6 - получается при реакции с хлором, но лишь при 600° С. Сине-стального цвета кристаллы WCl 6 плавятся при 275° С и кипят при 347° С. С бромом и йодом вольфрам образует малоустойчивые соединения: пента- и дибромид, тетра- и дииоднд.
При высокой температуре вольфрам соединяется с серой, селеном и теллуром, с азотом и бором, с углеродом и кремнием. Некоторые из этих соединений отличаются большой твердостью и другими замечательными свойствами.
Очень интересен карбонил W(CO) 6 . Здесь вольфрам соединен с окисью углерода и, следовательно, обладает нулевой валентностью. Карбонил вольфрама неустойчив; его получают в специальных условиях. При 0° он выделяется из соответствующего раствора в виде бесцветных кристаллов, при 50° С возгоняется, а при 100° С полностью разлагается. Но именно это соединение позволяет получить тонкие и плотные покрытия из чистого вольфрама.
Не только сам вольфрам, но и многие его соединения весьма активны. В частности, окись вольфрама WO 3 способна к полимеризации. В результате образуются так называемые изополисоединения и гетерополисоединения: молекулы последних могут содержать более 50 атомов.


Сплавы

Почти со всеми металлами вольфрам образует сплавы, однако получить их не так-то просто. Дело в том, что общепринятые методы сплавления в данном случае, как правило, неприменимы. При температуре плавления вольфрама большинство других металлов уже превращается в газы пли весьма летучие жидкости. Поэтому сплавы, содержащие вольфрам, обычно получают методами порошковой металлургии.
Во избежание окисления все операции проводят в вакууме или в атмосфере аргона. Делается это так. Сначала смесь металлических порошков прессуют, затем спекают и подвергают дуговой плавке в электрических печах. Иногда прессуют и спекают один вольфрамовый порошок, а полученную таким путем пористую заготовку пропитывают жидким расплавом другого металла: получаются так называемые псевдосплавы. Этим методом пользуются, когда нужно получить сплав вольфрама с медью и серебром.

С хромом и молибденом, ниобием и танталом вольфрам дает обычные (гомогенные) сплавы при любых соотношениях. Уже небольшие добавки вольфрама повышают твердость этих металлов и их устойчивость к окислению.
Сплавы с железом, никелем и кобальтом более сложны. Здесь, в зависимости от соотношения компонентов, образуются либо твердые растворы, либо интерметаллические соединения (химические соединения металлов), а в присутствии углерода (который всегда имеется в стали) - смешанные карбиды вольфрама и железа, придающие металлу еще большую твердость.
Очень сложные соединения образуются при сплавлении вольфрама с алюминием, бериллием и титаном: в них на один атом вольфрама приходится от 2 до 12 атомов легкого металла. Эти сплавы отличаются жаропрочностью и устойчивостью к окислению при высокой температуре.
На практике чаще всего применяются сплавы вольфрама не с одним каким-либо металлом, а с несколькими. Таковы, в частности, кислотостойкие сплавы вольфрама с хромом и кобальтом или никелем (амалой); из них делают хирургические инструменты. Лучшие марки магнитной стали содержат вольфрам, железо и кобальт. А в специальных жаропрочных сплавах, кроме вольфрама, имеются хром, никель и алюминий.
Из всех сплавов вольфрама наибольшее значение приобрели вольфрамсодержащие стали. Они устойчивы к истиранию, не дают трещин, сохраняют твердость вплоть до температуры красного каления. Инструмент из них не только позволяет резко интенсифицировать процессы металлообработки (скорость обработки металлических изделий повышается в 10-15 раз), но и служит намного дольше, чем тот же инструмент из другой стали.
Вольфрамовые сплавы не только жаропрочны, но и жаростойки. Они не корродируют при высокой температуре под действием воздуха, влаги и различных химических реагентов. В частности, 10% вольфрама, введенного в никель, достаточно, чтобы повысить коррозионную устойчивость последнего в 12 раз! А карбиды вольфрама с добавкой карбидов тантала и титана, сцементированные кобальтом, устойчивы к действию многих кислот - азотной, серной и соляной - даже при кипячении. Им опасна только смесь плавиковой и азотной кислот.

Вольфрамовая сталь

Содержание в стали вольфрама придает ей значительную твердость и заметно повышает температуру плавления. Применяется она для рессор, снарядов, денежных шкафов, для режущих инструментов (с присадкой молибдена - "самозакаливающаяся" сталь) и т. д. В общем можно различать два класса В. стали: бедную и богатую вольфрамом. При содержании вольфрама до 10 % сталь с 0,2 % С по микроструктуре близка к обыкновенной стали; при высшем содержании вольфрама появляется в стали целый ряд кристаллических включений, препятствующих, напр. прокатке. При 0,8 % С кристаллы эти являются уже при 5 % W. По составу они представляют, вероятно, C + W. Бедная вольфрамом сталь - по микроструктуре перлитическая, обладает свойствами, аналогичными обыкновенной стали, только, при том же содержании С, временное сопротивление, предел упругости и твердость больше, а удлинение, уменьшение площади поперечного сечения при разрыве и сопротивление удару тем меньше, чем больше W; разница эта иногда довольно значительна. Закалку и отжиг такая сталь принимает сильнее обыкновенной. Богатая вольфрамом сталь со включениями карбида обладает, при том же содержании С, меньшим временным сопротивлением и пределом упругости, чем предыдущая. Сопротивление удару почти не зависит от содержания С и W. Закалка при 850° вызывает весьма тонкое появление мартенсита; она сильно увеличивает временное сопротивление, предел упругости и твердость такой В. стали.


Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. - С.-Пб.: Брокгауз-Ефрон . 1890-1907 .

Смотреть что такое "Вольфрамовая сталь" в других словарях:

    вольфрамовая сталь - — Тематики нефтегазовая промышленность EN tungsten steel … Справочник технического переводчика

    Сталь (польск. stal, от нем. Stahl), деформируемый (ковкий) сплав железа с углеродом (до 2%) и др. элементами. С. ‒ важнейший продукт чёрной металлургии, являющийся материальной основой практически всех отраслей промышленности. Масштабы… …

    I (Staël; по мужу Сталь Гольштейн; Staël Holstein) Анна Луиза Жермена де (16 или 22.4.1766, Париж, 14.7.1817, там же), французская писательница, теоретик литературы, публицист. Дочь Ж. Неккера. Получила разностороннее домашнее образование … Большая советская энциклопедия

    Быстрорежущие стали легированные стали, предназначенные, главным образом, для изготовления металлорежущего инструмента, работающего при высоких скоростях резания … Википедия

    ВОЛЬФРАМОВЫЙ, вольфрамовая, вольфрамовое. прил. к вольфрам (хим.). Вольфрамовая руда. || Изготовленный из вольфрама; с примесью вольфрама (тех.). Вольфрамовая сталь. Вольфрамовая лампочка (с накаливающейся проволокой из вольфрама). Вольфрамовая… … Толковый словарь Ушакова

    Есть продукт, который получают проволакиванием какого либо тягучего в холодном состоянии металла через ряд постепенно уменьшающихся отверстий волочильной доски. Диаметр проволоки, смотря по надобности, колеблется от 0,004 0,5 . Наибольшее… …

    Есть продукт, который получают проволакиванием какого либо тягучего в холодном состоянии металла через ряд постепенно уменьшающихся отверстий волочильной доски. Диаметр проволоки, смотря по надобности, колеблется от 0,004″ 0,5″. Наибольшее… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

В литейной промышленности, как правило, используются стальные формы для алюминиевых изделий. Производителям приходиться снижать время производственного цикла, чтобы оставаться конкурентоспособными. Поскольку в таких случаях сталь зачастую уже достигает предела своих возможностей, производители прибегают к использованию вольфрама.

Специалисты по материаловедению из Plansee изучили свойства теплостойкой инструментальной стали сорта X37CrMoV5-1 (DIN 1.2343/ASTM) и вольфрамового сплава Densimet ® . Вольфрамовый сплав отличается более высокой коррозионной стойкостью и теплопроводностью.

Теплопроводность

Теплопроводность вольфрамового сплава выше, чем у стали, и она остается стабильной при температуре до 500 °C. Такая превосходная характеристика теплоотдачи обеспечивает более короткие циклы литья .

Кроме того, снижается риск температурного напряжения, термического растрескивания или деформации. Благодаря этому Densimet ® обладает более долгим сроком службы по сравнению со сталью.

Другое преимущество: более быстрое рассеивание тепла обеспечивает значительно более мелкозернистую микроструктуру отливок и улучшенные механические свойства. Для вас это означает меньший процент брака , а для ваших клиентов - идеальные характеристики литых изделий , в том числе высокую прочность и меньшую пористость.

Коррозионная стойкость

Вкладыши для отливок из Densimet ® особенно устойчивы к эрозии и коррозии. Традиционные вкладыши для отливок и литейные стержни особенно подвержены эрозии при впрыске алюминия на высокой скорости. Поскольку вольфрам не вступает в реакцию с расплавом алюминия, вкладыш, сделанный из Densimet ® , можно использовать в четыре раза дольше, чем вкладыши из стали.

Подробные результаты опубликованы в документе Properties and possible improvement of Tungsten Heavy Alloys for Die Casting Application (Свойства и возможные улучшения тяжелых вольфрамовых сплавов для литья в формы), составленном Рафаэлем Кюри (Rafael Cury) и Лораном Дартусом (Laurent Dartus). Соавтор Йоханнес Шрёдер (Johannes Schröder) представит эти результаты исследований в сентябре в Милуоки (США) на конгрессе Die Casting Congress and Tabletop Североамериканской ассоциации литья под давлением (NADCA).

Die Casting Congress and Tabletop
22–24 сентября 2014 г.
Выставочный центр Wisconsin Center в Милуоки/США

Мы изготавливаем из вольфрамовых сплавов Densimet® различные изделия в соответствии с потребностями клиентов, например вкладыши в формы, охлаждающие штифты или литниковые втулки. Densimet® представляет собой сплав чистого вольфрама с легирующими добавками: никелем и железом (Densimet® D185) или молибденом, никелем и железом (Densimet® D2M). Наши специалисты будут рады проконсультировать Вас при выборе материала. Более подробную информацию и контактные данные наших специалистов Вы найдете .

Вольфрам является тугоплавким металлом . У него есть свои разновидности марок, каждая из которых имеет особенности. Этот элемент в периодической таблице Менделеева находится под 74 номером и имеет светло-серый цвет. Его температура плавления составляет 3380 градусов. Основными его свойствами являются коэффициент линейного расширения, электрическое сопротивление, температура плавления и плотность.

Свойства и марки вольфрама

Вольфрам имеет свои механические и физические свойства, а также несколько разновидностей марок.

К физическим свойствам относят:

Механические свойства:

  • Относительное удлинение - 0%.
  • Временное сопротивление - 800−1100 МПа.
  • Коэффициент Пуассона 0,29.
  • Модуль сдвига - 151,0 ГПа.
  • Модуль упругости - 415,0 ГПа.

Отличается этот металл маленькой скоростью испарения даже при 2 тыс. градусов и очень большой точкой кипения - 5900 градусов. Свойствами, которые ограничивают область использования этого материала, являются малое сопротивление окислению, высокая склонность к ломкости и высокая плотность. На вид он напоминает сталь. Используется для того, чтобы изготавливать сплавы высокой прочности. Обработать его можно только после нагревания. Температура нагрева зависит от того, какой именно метод обработки вы собираетесь проводить.

Вольфрам имеет такие марки:

Область применения

Из-за своих уникальных свойств вольфрам получил широкое применение. В промышленности он применяется в чистом виде и в сплавах.

Основными областями применения являются:

Процесс производства тугоплавкого вольфрама

Этот материал относят к редким металлам. Для него характерны сравнительно небольшие объёмы потребления и производства, а также в земной коре малая распространённость. Никакой из редких металлов не получают восстановлением из сырья. Изначально оно перерабатывается в соединение химическое. А ещё любая редкометаллическая руда перед переработкой подвергается дополнительному обогащению.

Выделяют три главные стадии для получения редкого металла:

  1. Разложение руды. Извлекаемый металл отделяется от основной массы перерабатываемого сырья. Он концентрируется в осадке или растворе.
  2. Получение химического чистого соединения. Его выделение и очистка.
  3. Из полученного соединения выделяют металл. Так получают чистые материалы без примесей.

В процессе получения вольфрама тоже есть несколько стадий . Исходное сырьё - шеелит и вольфрамит. Обычно в их составе содержится от 0,2 до 2% вольфрама.

  1. Обогащение руды производится при помощи электростатической или магнитной сепарации, флотации, гравитации. В итоге получают концентрат вольфрамовый, который содержит примерно 55−65% ангидрида вольфрама. Контролируется в них и наличие примесей: висмута, сурьмы, меди, олова, мышьяка, серы, фосфора.
  2. Получение вольфрамового ангидрида. Он является сырьём для изготовления вольфрама металлического или же его карбида. Для этого проводится ряд процедур, таких как: выщелачивание спёка и сплава, разложение концентратов, получение вольфрамовой технической кислоты и прочие. В результате этих действий должен получиться продукт, который будет содержать в себе 99,9% трехокиси вольфрама.
  3. Получение порошка. В виде порошка чистый металл может быть получен из ангидрида. Для этого проводится восстановление углеродом или водородом. Углеродное восстановление проводится реже, потому что ангидрид насыщается карбидами и это приводит к хрупкости металла и ухудшению обработки. При получении порошка применяют специальные методы, которые позволяют контролировать форму и размер зёрен, гранулометрический и химический составы.
  4. Получение вольфрама компактного. В основном он в виде слитков или штабиков является заготовкой для изготовления полуфабрикатов: ленты, прутков, проволоки и прочих.

Вольфрамовая продукция

Из вольфрама изготавливают многие необходимые для хозяйства предметы, такие как проволока, прутки и прочие.

Прутки

Одной из наиболее распространённой продукцией из этого тугоплавкого материала являются вольфрамовые прутки. Исходным материалом для его изготовления является штабик.

Чтобы из штабика получить пруток его подвергают ковке, используя ротационную ковочную машину.

Осуществляется ковка при нагревании, так как этот металл при комнатной температуре очень хрупкий. В ковке выделяют несколько этапов. На каждом последующем прутки получаются меньшего диаметра.

На первом этапе получаются прутки, которые будут иметь диаметр до 7 миллиметров, если штабик будет иметь длину от 10 до 15 сантиметров. Температура заготовки при ковке должна равняться 1450−1500 градусов. Нагревающим материалом обычно является молибден. После второго этапа прутки будут составлять в диаметре до 4,5 миллиметров. Температура штабика при её производстве примерно 1250−1300 градусов. На следующем этапе прутки будут иметь диаметр до 2,75 миллиметров.

Прутки марок ВЧ и ВА получают при более низких температурах, чем марок ВИ, ВЛ и ВТ.

Если заготовка была получена методом плавки, то горячая ковка не осуществляется. Связано это с тем, что такие слитки имеют крупнокристаллическую грубую структуру. При использовании горячей ковки могут появиться разрушения и трещины.

В этой ситуации вольфрамовые слитки подвергаются горячему двойному прессованию (приблизительная степень деформации 90%). Производится первое прессование при температурном режиме в 1800-1900 градусов, а второе - 1350−1500. После этого заготовки подвергаются горячей ковке для того, чтобы из них получить вольфрамовые прутки.

Эта продукция применяется во многих промышленных отраслях. Одна из наиболее распространённых - сварочные неплавящиеся электроды. Для них подойдут прутки, которые изготовлены из марок ВЛ, ВЛ и ВТ. В качестве нагревателей применяются прутки, изготовленные из марок МВ, ВР и В. А. Они применяются в печах, температура которых может достигать 3 тыс. градусов в вакууме, атмосфере инертного газа или водорода. Вольфрамовые прутки могут быть катодами газозарядных и электронных приборов, а также радиоламп.

Электроды

Одним из главных компонентов, которые необходимы для сварки, являются сварочные электроды. При сварке дуговой они используются наиболее широко. Относится она к термическому классу сварки, в котором за счёт термической энергии осуществляется плавление. Автоматическая, полуавтоматическая или ручная дуговая сварка является самой распространённой. Вольтовой дугой создаётся тепловая энергия, которая находится между изделием и электродом. Дугой называют стабильный мощный электрический заряд в ионизированной атмосфере паров металла, газов. Чтобы получить дугу, электрод к месту сварки проводит электрический ток.

Сварочным электродом называют проволочный стержень, на который нанесено покрытие (возможны варианты и без покрытия). Для сварки существует множество различных электродов. Их отличительными чертами являются диаметр, длина, химический состав. Для сварки определённых сплавов или металлов применяются разные электроды. Наиболее важным видом классификации является разделение электродов на неплавящиеся и плавящиеся.

Сварочные плавящиеся электроды во время сварки расплавляются, их металл вместе с металлом расплавленным свариваемой детали пополняют сварочную ванну. Выполняют такие электроды из меди и стали.

А вот электроды неплавящиеся в процессе сварки не расплавляются. К ним относят вольфрамовые и угольные электроды. При сварке необходимо подавать присадочный материал, который плавится и с расплавленным материалом свариваемого элемента образуют сварочную ванну. Для этих целей в основном применяют сварочные прутки или проволоку. Электроды сварочные могут быть непокрытыми и покрытыми. Покрытие играет важную роль. Его компоненты могут обеспечить получение металла швов определённых свойств и состава, защиту расплавленного металла от влияния воздуха и стабильное горение дуги.

Составляющие в покрытии могут быть раскисляющими, шлакообразующими, газообразующими, стабилизирующими или легирующими. Покрытие может быть целлюлозным, основным, рутиловым или кислым.

Вольфрамовые электроды используются для сварки металлов цветных, а также их сплавов, высоколегированных сталей. Хорошо вольфрамовый электрод подходит для образования сварного шва повышенной прочности, при этом детали могут иметь различный химический состав.

Вольфрамовая продукция очень качественная и нашла своё применение во многих отраслях, в некоторых она просто незаменима.